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P. 0. Box 2008 
Oak Ridge, TN 37831-6224 

2Department of Chemical Engineering 
University of Tennessee 
Knoxville, TN 37996 

ABSTRACT 

The efficiency of droplet/bubble breakup in inultiphase contactors can be increased by 
applying external fields at resonance frequencies of the drops/bubbles. Experimental and 
theoretical techniques, developed for the study of forced oscillation of pendant drops on 
nozzles, are used to gain a fundamental understanding of drop response as a function of 
forcing frequency. Preliminary results of drop oscillations caused by electrical and tlow 
perturbation techniques indicate that the relationship of resonance frequency to drop size 
for a given fluid system is not affected by the means of excitation. Computational 
techniques may be used to gain insight into phenomena which are difficult to probe by 
experiment, such as internal flow fields. The understanding gained by use of these 
techniques will be indispensable in design and operation of future multiphase contacting 
devices. 

INTRODUCTION 

The performance of inultiphase separations equipment, such as liquid-liquid 

extractors, spray towers, and bubble columns, is dependent upon the intimacy of contact 

The submitted manuscript has been authored by a contractor of the U.S. Government 
under contract No. DE-AC05-840R21400. Accordingly, the U.S. Government retains 
a nonexclusive, royalty-free license to publish or reproduce the published form of this 
contribution, or allow others to do so, for U.S. Government purposes. 
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1190 DEPAOLI ET AL. 

of the two phases. One means of increasing mass transfer rates is to produce smaller 

droplets or bubbles, thereby providing greater amounts of interfacial area per unit 

volume. This is commonly achieved by intense agitation or high-velocity spray from fine 

nozzles, but the desired drop or bubble size reduction may also be  achieved with lower 

power requirements by applying external fields, such as  electrical, mechanical, or 
acoustic fields, to the dispersed-phase tluid entering the device. 

Significant examples of this approach for tine droplet production include the 

emulsion-phase contactor (EPC) ( I )  and the electric dispersion reactor (2) which use 

high-voltage direct-current (DC) fields to disperse a conductive liquid into a 

nonconductive continuous phase. The  EPC has been shown to provide multistage 

extraction performance. with energy requirements three orders of  magnitude lower than 

stirred contactors (3). To date, the EPC approach has been employed in two industrial 

applications: a commercial device for automated extraction of aqueous samples for 

contaminant analysis (4) and a column for reinoval of catalyst poisons from methyl 

tertiary butyl ether reactor feed ( 5 ) .  

A means to h r t h e r  improve such devices is to determine relationships between the 

properties of  the fluids being contacted and the frequency of  the applied field which 

minimizes power consumption required for drophubble  breakup. The bubble size of 

air injected into flowing water has been shown to be a function of  flow pulse frequency 

(6), while the tield strength required for breakup of drops exiting a nozzle using an 

electric field has also heen shown to he frequency dependent (7). These results suggest 

that breakup at a nozzle may be most effectively achieved by applying external forces at 

resonance frequencies of the droplets exiting the nozzle, in similar fashion as has been 

shown for enhancement of heat transfer and breakup of free drops (8,9). 

Our previous work (10) was aimed at experimentally measuring the resonance 

frequencies of pendant droplets subjected to periodic mechanical forces generated by 

small flow perturbations. The  results indicated that resonance frequencies of drops a re  

greatly affected by the presence of a s d i d  support. Qualitative agreement was found with 

the analytic theory of Strani and Sahetta ( I  I ) ,  with better agreement for drops whose 
radii are  large in relation to those of the nozzles. The restrictive geometry of  Strani and 

Sabetta’s analytic theory. particularly the requirement of a spherical bowl-shaped support 
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FORCED OSCILLATIONS OF PENDANT DROPS 1191 

of the same radius as the drop, limits its application to more practical problems; thus, 

numerical simulations are necessary [see, e.g. (12,13)]. 

This paper presents an extension of our previous work, providing experimental 

measurements of resonance frequencies of drops excited by electrical means as well as 

by the flow-perturbation technique used in the earlier work (10). In addition, numerical 

techniques have been developed to solve the nonlinear viscous-flow problem of drop 

oscillations induced by each of these excitation techniques for practical geometries. 

Preliminary results of the experiments and computations are presented for a liquid-in-air 

system. 

METHODS 

Problem Definition 

Figure 1 shows a conceptual drawing of the system treated by theory and 

experiments. A drop of density p,  viscosity p (and kinematic viscosity v), surface 

tension u, and volume V is suspended on a nozzle with outside radius R. The drop shape 

in the absence of external forces will be a spherical section, while gravitational 

acceleration g causes the drop to deform in a prolate shape. Upon action of an external 

force, the drop will oscillate about this equilibrium shape. 

As detailed in a separate paper on free oscillations of pendant drops on rods (13), the 

system may be concisely described using dimensionless parameters. The length scale is 

taken to be the nozzle radius R,  while the time scale is defined by @R3/o)". Using these 

bases, the Reynolds number is defined as Re = (1 lv)(uRlp)", and the gravitational Bond 

number, signifying the importance of gravitational force relative to surface forces, is 

defined as G=pgR'/u. In addition, the size of the drop relative to the nozzle can be 

described in terms of a spherical section having the same volume as the pendant drop. 

The drop size parameter, a=h /D,  where h is the vertical distance between the center of 

the spherical section and the nozzle outlet and D is the radius of the spherical section, is 

especially convenient; its values range from a= -1 for an infinitesimally small volume 

extending out of the nozzle to a=O for a hemisphere to a= 1 for an infinitely large drop. 

Frequency of oscillation may be made dimensionless by multiplying by the time scale; 

hence, the dimensionless frequency is w=2af@R3/o)", where f is the frequency in Hz. 
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1192 DEPAOLI ET AL 

UNDEFORMED AND DEFORMED 
DROP SHAPES OF EXTERNAL FORCES 

DROP SHAPE IN ABSENCE 

LENGTH: R, TIME: 

Re e ( l / U ) m p  

G I pgR2/a 

v = 5 (D+h)'(D-h) 

a B h/D 

Figure 1. Oscillating pendant drop: definition sketch, scaling parameters and 

dimensionless groups. 

Exoerimental 

Figure 2 shows a schematic of the apparatus assembled for these studies. The 

grounded 15-cm-long nozzle supporting the drops was positioned perpendicular to, and 

coaxial with, a 7.6-cm-diameter circular metal electrode. The nozzle-electrode separation 

was approximately 2 . 2  cm. These items were held in a cylindrical enclosure with a 10- 

cm inside diameter constructed from polyvinyl chloride and Tetlonm. The nozzle was 

connected by 0.3-cm-diameter tuhing to a micrometer syringe. A portion of this was 

flexible silicone tubing, held by a vihraticinal transducer controlled by a 25-W amplifier 

with frequency range of 2 to 20,000 Hz (Alpha-M, models AV-6 and OC-25). The 

electrode was connected to a high-voltage pulse generator (Velonex, model 660). An 

oscilloscope (Nicolet, model PR050) was used to measure the frequency of each forcing 

function. Two video cameras (Tri-Tronics Inc. model PCSM-5600) were used in the 

experiments. lmages of each entire drop were collected using a frame grabber hoard 

(Data Translation, model DT285 1) installed in a personal computer. The images were 
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FORCED OSCILLATIONS OF PENDANT DROPS 

TRANSDUCER El 

1193 

VIBRATIONAL 
CONTROLLER - - 

OSClLLOSCOPE 

PC WITH 
NOZZLE 

I I  D CAMERA 

- - - - - 
b 

CAMERA LONG-DISTANCE 
MICROSCOPE 

1 I 

Figure 2 .  Experimental apparatus for study of pendant drop oscillations driven by 

electrical and mechanical means. 

processed using a calibration of vertical and horizontal pixel values to yield the volume 

of the axisymmetric drop. The motion of the bottom tip of the drop was detected using 

the image ohtained by a long-distance microscope (Questar, model QM-100) with a field 

of view of less than 1 mm. Thus, very low amplitude oscillations could be detected. 

Experiments were conducted by metering a drop at the tip of the nozzle using the 

syringe. Care was taken to remove bubbles present in the tuhing. An image of the drop 

was collected for size measurement prior to oscillation; then the power supply for either 

the electrical or mechanical excitation was activated at low amplitude. The frequency and 

amplitude of excitation were adjusted until motion of the interface was detected. The 

amplitude was decreased until motion was barely detectable, then the frequencies at 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
0
2
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



1194 DEPAOLI ET AL. 

which motion of the interface was maximized were recorded. An image of the drop was 

collected after oscillation for size measurement. 

The details of the dynamic behavior of forced pendant drop oscillations are modeled 

here by means of finite-element computations. The solution strategy used in modeling 

oscillations forced by means of electrical and flow perturbation is summarized in Figure 

3. In each case, the nonlinear Navier-Stokes system is solved for viscous flow within the 

liquid drop and a finite section of nozzle. The surrounding fluid in each case is a gas of 

negligible density and viscosity. 

When the external forcing comes from a periodically applied electric field, the 

problem is modeled as a drop held on a nozzle attached to the top plate of a parallel plate 

capacitor. The top electrode and nozzle are grounded, while a sinusoidally varying 

voltage V(r) is applied t u  the lower electrode, 

V(t) = Vosin(27CFt)  

where V, is the peak voltage, t is time, and F is the frequency of the applied voltage in 

Hz. This problem is solved by tessellating regions both inside and outside the drop into 

a set of quadrilateral elements. With finite-element hasis functions and Galerkin’s 

method of weighted residuals, spatial variations of field variables are discretized. Thus, 

the original nonlinear partial differential equations of the Navier-Stokes system, 

governing the flow field inside the drop, and the Laplace system, governing the electric 

field outside the drop, are transformed into a set of nonlinear differential-algebraic 

equations. Following the procedure known as the method of lines, the time derivatives 

are approximated hy finite ditTerences and the differential-algebraic system becomes a set 

of nonlinear algebraic equations that can be solved iteratively using an advanced 

workstation or large mainframe computer. 

When the external forcing comes from a periodic tlow up and down the nozzle, the 

system is simplified somewhat to include only the volume hounded by the nozzle and the 

free liquid surface. The forcing function is expressed as a flow velocity field applied at 

a location upstream of the nozzle outlet, 
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FORCED OSCILLATIONS OF PENDANT DROPS 1195 

FOR ELECTRIC FIELD 
OUTSIDE DROP 

SINUSOIDALLY VARYING 
FLOW RATE IN TUBE 

NAVIER-STOKES SYSTEM 
FOR FLOW IN LIQUID DROP 

DROP SURFACE DRIVES 

I 1 SlNUSOfDALLY VARYING VOLTAGE 
, AT BOTTOM ELECTRODE 

Figure 3. Physical principles for numerical modeling of driven pendant drop 

oscillations. 

where v&r) is the vertical velocity of the tluid at radial position x within the nozzle at 

time t ,  v, is the maximuin velocity, and F is the forcing frequency. The solution 

procedure for this case is similar to that for the electrical excitation, without the 

complication caused by coupling of the electrical field, the flow tield, and the drop shape. 

RESULTS AND DISCUSSION 

Figure 4 presents photographs of pendant water droplets undergoing forced 

oscillations in air. The upper images were collected by an unshuttered video camera 

during flow-induced oscillations, showing the maximum extents of drop deformation. 

The left "single-lobed" oscillation is from the lowest frequency resonance mode, while 

the right "two-lobed" oscillation is from the second-lowest resonance mode. These 

general shapes of the first two modes of oscillation are similar to those calculated for the 

system of Strani and Sabetta (1 1). The lower images are consecutive frames of a small 

water drop at a I-ms interval, collected by a Kodak Ektapro EM Motion Analyzer during 
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DEPAOLI ET AL. 

Figure 4.  Photographs of pendant water drops undergoing forced oscillations. 

high-frequency, high-amplitude electrical excitJtion. These frames show the more 

complex shapes that may arise i n  nonlinear oscillations. At higher electrical field 

strengths, droplets are ejected from the "nipple" (cf., 11) shown in the left frame. 

Figure 5 presents results of forced oscillation experiments conducted with drops of 

a mixture of70% glycerine and 30% water held o n  a 0.159-cm-outside diameter, 0.0508- 

cm-inside diameter nozzle so that Rc=9 and G=O.11. The plot presents dimensionless 

frequency of the lowest mode of oscillation as a function of the drop-size parameter. 

Oscillation frequency is shown to  he a strong function of drop size, with larger drops 

exhihiting luwer resonance frequency . The frequencylsize relationship for electrical 

excitation is indistinguishahle froin that for  mechanical excitation, despite the different 
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FORCED OSCILLATIONS OF PENDANT DROPS 1197 

. 
o Mechanical Excitation 

-0.1 0.1 0.3 0.5 0.7 0.9 

Drop Size Parameter a 

Figure 5. Experimental results showing effect of drop size upon the resonance 

frequency of the lowest mode of oscillation of pendant drops subjected 

to electrical and mechanical excitation; Re=9, G=O. 11. 

means by which the forces induce drop motion. This agreement indicates that the 

resonance frequency is a function of the fluid properties and geometry and is not greatly 

affected by the physical character of the low-amplitude perturbation. Of interest for 
further experimentation to test this agreement are higher amplitude oscillations and 

variation of the electrical Bond number (indicating the relative importance of electrical 

forces and surface tension). 
When a voltage is applied at the bottom electrode, while the top electrode, nozzle, 

and drop are all connected to electrical ground, an electric field is generated around the 

conducting drop. As shown in Figure 6, calculated equipotential contours are not 

distributed uniformly along the pendant drop surface. Hence, the drop may be deformed 

and forced to oscillate by the electric field. Computations of electric field distribution 

such as shown in Figure 6 may lead to improved nozzle/electrode designs (14,15). 

Figure 7 shows the results of finite element computations for flow fields inside a 

pendant drop at various stages within an oscillation cycle when driven by a sinusoidally 
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- 3  -2 -1 0 1 2 3 4 5  

- 
I '  1 1 
-3 -2 -1 0 1 2 3 4 5  

- 
1 '  1 I 
-3 -2 - I  0 1 2 3 4 5  

- 
I '  1 1 I 

- 3  -2 -1 0 1 2 3 4 5  

Figure 6. Calculated electric potential distribution surrounding a pendant drop  

during electrical excitation. 
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FORCED OSCILLATIONS OF PENDANT DROPS 1199 

RADIAL DIRECTION 
-29 0 2.5 5 7.5 10 U.5 15 11.5 20 225 

Figure 7. Flow fields within a pendant drop during electrically driven oscillations. 

Results are shown for dimensionless times of 37.621, 39.121, 41.621, 

and 43.421. 

varying voltage. The parameters for this simulation are Re=lO, G=0.1, and a=O.8, 

with a dimensionless driving frequency of 0.75. The first frame shows the drop at a 

point in time when it is nearing maximum extension. The velocity vectors are uniformly 

directed in bulk motion. The second frame shows the velocity field at a slightly later 

time as the drop has passed through its point of inaxiinuin extension. Viscous and 

inertial effects in the drop prevent it from uniformly reversing the direction of flow, and 

a pair of vortices are formed. The next frame indicates a later point at which the entire 

flow field is directed upward. The final frame shows that as the drop passes through the 

point of minimum extension, a pair of vortices are again formed. The vortices lead to 

mixing within the drop and wnuld not be predicted were the flow approximated as 

inviscid (cf., 11). 
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Re=l, G=O, vz=(l-x2)sin(0.1t) 

0 001 2.801 

4 2  

2: pg 
4.2 

19.801 

2.1 om 
4.2 

30.001 

21.501 

31.701 

13.001 14.701 16.401 18.101 pjpl-lDlD] 
23.201 24.901 26.601 28.301 

~ l ~ j ~ l ~ l  
33.401 35.101 36.801 38.501 

40201 41901 43.601 45301 47001 48.701 

2 1  O /gq Dl pJ pi 4 2  
- 2 5  0 2 5 - 2 5  0 2 5 - 2 5  0 2 5 - 2 5  0 2 5 - 2 5  0 2 5 - 2 5  0 2.5 

Figure 8. Calculated drop shapes of a pendant drop during large-amplitude flow 

perturbation. The  solid line in each frame is the drop surface, while the 

dotted line represents the shape of a spherical section having the same 

volume as the d rop .  

Figure 8 presents a time series of droplet shapes for a case of high viscous forces 

(Re= I ) ,  no gravitational forces (G=O), and high-amplitude flow perturbation. T h e  drop 

shape deviates from the equilihrium shape due to the flow, with the drop extended farther 

than equilibrium during drop growth and extended less during drop shrinkage. These 

plots for a greatly exaggerated flow perturbation clearly indicate the driving force for 

oscillation by this technique; in experiments, amplitude is maintained at a low level such 

that motion of the interface is not detectable except at resonance conditions. 
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CONCLUSIONS 

Techniques have heen developed for the study of forced oscillation of pendant drops 

on nozzles. Experiments indicate that the relationship of low-amplitude resonance 

frequency to drop size is independent ofthe physical means of excitation. Computational 

capabilities have been developed to match experimental conditions. These computational 

tools will provide means, for probing details of oscillations that are difficult to determine 

experimentally, such as internal tlow fields, and they will be useful for prediction of 

pendant drop response for any fluid properties. 

Present work involves detailed comparison of experiments and theory for validation 

of the computational methods. Future work will be aimed at the dynamics in liquid- 

liquid systems, and upon mass transfer. Experiments will also he aimed at relating 

resonance frequencies of pendant drops to breakup. Such information will be useful in 

design and operation of hittire iiiiiltiphase contacting equipment. 
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